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Recuando para avançar: rumo a uma abordagem do século XXI para 
conhecimento de fração com o Modelo-4A de Instrução 

 

Na vida cotidiana, números racionais estão sempre presentes e são 

extraordinariamente úteis. Infelizmente, tanto para professores como para 

estudantes, as frações provaram ser conceitualmente difíceis. 

Argumentamos que as dificuldades conceituais do conhecimento de frações 

têm duas causas: ontológica e epistemológica. O problema ontológico 

baseia-se nas dominantes teorizações ahistóricas das frações que são a base 

das propostas curriculares atuais. O desafio epistemológico do 

conhecimento da fração origina-se em desatenção instrucional para 

possibilitar a produção de sentido para o conceito de número fracionário 

aos alunos. Do ponto de vista histórico-cultural, inspirado no trabalho 

teórico e empírico de Davydov e Gattegno, propomos perspectivas 

ontológicas e epistemológicas como alternativas à construção do 

conhecimento de frações. Finalmente, apresentamos um instrumento 

pedagógico—o 4A-Instructional Model—projetado para engendrar a visão 

dos aprendizes sobre si mesmos como agentes capacitados do 

conhecimento matemático. 
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Alcanzando hacia atrás para avanzar: Hacia un enfoque del siglo XXI 
para conocimiento de fracción con el Modelo-4A de Instrucción 
 
En la vida cotidiana, los números racionales están siempre presentes y son 

extraordinariamente útiles. Desgraciadamente, tanto para profesores como 

para estudiantes, las fracciones probaron ser conceptualmente difíciles. 

Argumentamos que las dificultades conceptuales del conocimiento de 

fracciones tienen dos causas: ontológica y epistemológica. El problema 

ontológico se basa en las dominantes teorizaciones ahistóricas de las 

fracciones que son la base de las propuestas curriculares actuales. El 

desafío epistemológico del conocimiento de la fracción se origina en 

desatención instruccional para posibilitar la producción de sentido para el 

concepto de número fraccionario a los alumnos. Desde el punto de vista 

histórico-cultural, inspirado en el trabajo teórico y empírico de Davydov y 

Gattegno, proponemos perspectivas ontológicas y epistemológicas como 

alternativas a la construcción del conocimiento de fracciones. Finalmente, 

presentamos un instrumento pedagógico-el 4A-Instruccional Model-

diseñado para engendrar la visión de los aprendices sobre sí mismos como 

agentes capacitados del conocimiento matemático. 
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Introduction 

 

Rational numbers, whether represented as fractions, decimals, or percentages, are not only infinite 

but also ubiquitous. In daily life, they are inescapable in rural, suburban, and urban environments; at 

home and work; in commerce, sports, and recreation. Whether one is engaged in quotidian or academic 

pursuits, rational numbers are also useful. The academic and the quotidian utility of rational numbers are 

connected. Fractions did not originate as an abstract algebraic structure such as an Abelian group with the 

addition operation
1
 or as a commutative field with a unit.

2
 Instead, they emerged to answer questions 

concerning “how much?”. To answer such a question in practical and material terms, as Gillings 

(1972/1982) recounts, in Ancient Egypt, land surveyors used rods, poles, and knotted cords of rope to 

measure lengths and the end-to-end distance of the property. Such measures rarely, if ever, were an exact 

multiple of the rod, pole, or distance between two knots on a cord; that is, of the unit of measure. We can 

imagine that at first the measure as approximations to natural numbers was acceptable. However, later, to 

pay and collect taxes, for instance, more precise measurements were undoubtedly required. 

In quotidian and academic endeavors alike, rational numbers are moreover essential. In 

educational settings, they are so critical that procedural and, especially, conceptual knowledge of 

fractions are linchpins for success with higher mathematics. For achievement in mathematics beyond the 

elementary school years, an emerging body of empirical studies in mathematics education is documenting 

the importance of competence with fractions (Siegler et al., 2011; Bailey et al., 2012; Siegler et al., 

2012). However, despite their importance, current research also indicates that students and their teachers 

indistinguishably lack flexible and conceptual knowledge of fractions (Lamon, 2012; Olanoff et al., 

2014). 

Conceptual knowledge of mathematics is critical for pleasurable and successful participation in 

school mathematics and recreational mathematics as well as in fields such as science, technology, and 

engineering. Policy makers, psychologists, mathematicians, and mathematics education researchers alike 

recognize both anecdotally and empirically that conceptual knowledge of fractions and, in general, 

rational numbers constitute a necessary condition for participation and high performance in advanced 

mathematics (Wu, 2001; Lamon, 2007; National Mathematics Advisory Panel, 2008; Wu, 2009; Bailey et 

al., 2012; Lamon, 2012; Siegler et al., 2012; Maher e Yankelewitz, 2017). Students who experience 

conceptual difficulties with fractions not only incorrectly order and operate on them (Maher e 

Yankelewitz, 2017) but also have poor mathematics achievement and unsuccessful experiences learning 

higher mathematical topics such as algebra, probability, and calculus (Lamon, 2001; Bailey et al., 2012; 

Booth e Newton, 2012; Siegler et al., 2012; Depaepe et al., 2015; Torbeyns et al., 2015). 
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The conceptual deficiency in fraction knowledge among teachers and students coexists with 

current curriculum standards and textbooks grounded in known ineffective an epistemological notion 

about fractions that they represent parts of a whole equipartitioned (Ni e Zhou, 2005; Alajmi, 2012). This 

part/whole notion and its corresponding pedagogical practices are based on an ontological view of 

fractions. 

Fractions are conceptual objects. Their existence in mathematics, that is, their ontology is owed to 

a theorization of specific human actions that are part of a material historical, cultural practice. There can 

be different ontological perspectives about a mathematical concept. In the case of fractions, there are 

mainly two perspectives: partitioning and measurement. From the partitioning perspective, the existence 

of fractions emerges from the division of divisible things, a unit equally subdivided and a certain number 

of them distinguished. Whereas, from a measurement perspective, the ontology of fractions arises from 

problems of measuring quantities, which is the multiplicative comparison of pairs of magnitudes. 

Moreover, based on its ontological commitment, each perspective defines fractions differently. 

The dominant perspective in school mathematics is the partitioning view that privileges a so-

called part/whole notion or subconstruct (Lamon, 2012). Within the partitioning perspective, researchers 

generally agree that there are four other subconstructs—quotient, ratio, operator, and measure—and that 

constitute a complete knowledge of fractions (Kieren, 1980; Behr et al., 1983; Freudenthal, 1983; 

Vergnaud, 1983; Kieren, 1993; Lamon, 2001). Despite decades of reforms in mathematics education 

policy, curriculum standards, and textbooks, students still have serious difficulties conceptualizing 

fractions and rational numbers (Martin et al., 2007; National Mathematics Advisory Panel, 2008; Alajmi, 

2012; Lin et al., 2013; Siegler e Lortie-Forgues, 2015; Maher & Yankelewitz, 2017). 

Contributing to difficulties in learning fraction is its multifaceted construct. For instance, a 

fraction 
   can be conceived as a part of a whole (three out of four equal parts), as a quotient (three divided 

by four), an operator (three quarters of a quantity), a ratio (three objects to four objects), and finally as a 

measure (iterating the unit fraction, 
    three times on a number line). Historically and currently, one 

ontological approach has dominated: the view that fractions are parts of wholes (Davydov & Tsvetkovich, 

1991; Morris, 2000). That is, the symbol,    , represents parts of a whole, where   indicates the number 

of equal parts into which a whole has been partitioned, and   designates the number of parts of interest. 

Given a part/whole interpretation, the fraction, 
    is understood to be three parts out of four parts. Relying 

only on this interpretation of fractions limits students’ understanding (Lamon, 2012). For instance, in 

Figure 1, do the shaded portions represent 
   of 1, 

   of 2, 
   of 1, or something else? 
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Figure 1. What fraction do the shaded portions represent? 
(Source: Gattegno e Hoffman, 1976) 

Given the dominant part/whole ontological interpretation of fractions, as Gattegno and Hoffman 

(1976) argue with presenting Figure 1, can students be faulted for thinking that the shaded circles in 

Figure 1 represent 
   of 2? Students who only work with limited types of visual representations, for 

example, area models like circles divided into equal-sized pieces, may develop limited strategies, such as 

counting the number of pieces rather than assessing the relationship of the part(s) to a whole or unit. 

Moreover, conceiving of fractions as “parts of a whole,” students have difficulty making sense of the 

fractions where the numerator is larger than the denominator such as 
   and conceding that a fraction is a 

number, not just part of something (Tucker, 2008). 

Corroborating observations of other researchers about the dominant ontological perspective (for 

example, Kerslake, 1986; Behr et al., 1992; Tzur, 1999; Wu, 2009), Lamon (2001) emphasizes that 

“mathematically and psychologically, the part/whole interpretation of fraction is not sufficient as a 

foundation for the system of rational numbers” (p. 150). Nevertheless, a critical gap in the knowledge 

base persists concerning what alternative subconstruct or ontological perspective overcomes the 

insufficiency of the dominant perspective and facilitates robust conceptual understanding of fractions. 

A complete theory and effective framework for teaching and learning rational numbers are needed 

(Lamon, 2007). This is especially true since “students’ knowledge of fractions … predicts their 

mathematics achievement in high school, above and beyond the contributions of their knowledge of 

whole-number addition, subtraction, and multiplication; verbal and nonverbal IQ; working memory; 

family education; and family income” (Siegler et al., 2012, p. 695). 

In mathematics education, research on students’ learning of fractions and operations on fractions 

has been based on two ontological perspectives: partitioning and measurement. The partitioning 

perspective views a fraction as a relation established between parts of a whole equipartitioned. This 

ontological perspective is rooted in a belief that counting is the basis for arithmetic and has led to the 

commonly accepted part/whole conception of fractions (Schmittau, 2004). Indeed, it is how the Common 

Core State Standards (National Governors Association Center for Best Practices e Council of Chief State 
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School Officers, 2010) suggests introducing factions in the elementary school grades. Nevertheless, 

research indicates that this perspective seriously limits the robustness of students’ understanding of 

fractions (Kerslake, 1986). It tends to support the erroneous idea that a positive fraction is composed of 

two different natural numbers and impedes understanding of improper fractions (Tzur, 1999). While 

research on fraction knowledge within the partitioning perspective has yielded valuable insights into 

cognitive issues of fraction learning (see for example, Dienes, 1967; Kieren, 1976; 1980; Behr et al., 

1984; Mack, 1990; Kieren, 1993; Mack, 1995; Behr et al., 1997; Tzur, 1999; Lamon, 2007; 2012; Hunt et 

al., 2016; Patahuddin et al., 2017), a critical limitation to fractions research has been its ontological 

foundation, the partitioning perspective. Little sustained research has investigated the known alternative 

ontological basis for fraction knowledge, the measurement perspective. 

Reaching back historically 

Before indicating research on the measurement ontology, it is instructive to consider why the 

partitioning perspective has dominated curricular approaches to fraction knowledge. As Schmittau (2003) 

explains the World is full of things which are countable and, interacting in the World, children participate 

in inherited cultural practices that involve counting. Consequently, children begin formal schooling with 

knowledge of counting and properties of counting numbers. In Vygotskian terms, through their counting 

practices, children develop spontaneous rather than scientific knowledge of counting numbers and their 

properties. Since dominant educational theory suggests, as Schmittau (2003) notes, that “children must 

construct their own concepts, what better basis could there be on which to build future mathematical 

understanding than children’s own spontaneous counting concepts?” (p. 226). Counting does generate 

positive integers but not fractions or irrational numbers. Formally, mathematics defines fractions as the 

quotient of two integers,    , such that      Since this understanding of fractions is not an entry point 

to fraction knowledge for children, educators devise physical and visual representations such as area 

models and equipartition the models to illustrate fractions as the ratio of the positive integers formed. 

However, its formal mathematical definition and the pedagogical practices of constructing equipartitioned 

visual models are unrelated conceptually to the material origin of fractions. 

Fractions emerged 4,000 years or more ago in the social practice of measuring quantities. In a 

chapter on the essential nature of mathematics, the Soviet-era mathematician, physicist, and philosopher, 

A. D. Aleksandrov
3
 (1963), locates the origin of fractions in the early interaction between geometry and 

arithmetic. 

In general, the measurement of any magnitude combines calculations with some specific 

operation which is characteristic of this sort of magnitude.… But in the process of 
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measurement it turns out, generally speaking, that the chosen unit is not contained in the 
measured magnitude an integral number of times, so that a simple calculation of the 

number of units in not sufficient. It becomes necessary to divide up the unit of 

measurement in order to express the magnitude more accurately by parts of the unit; that 
is, no longer by whole numbers but by fractions. It was in this way that fractions actually 

arose, as is shown by an analysis of the historical and other data. They arose from the 

division and comparison of continuous magnitudes; in other words, from measurement. 

The first magnitudes to be measured were geometric, namely lengths, areas of fields, and 
volumes of liquids or friable materials, so that in the earliest appearances of fractions we 

see the mutual action of arithmetic and geometry. This interaction leads to the appearance 

of an important new concept, namely fractions, as an extension of the concept of number 
from whole numbers to fractional numbers…. Fractions did not arise, and could not arise 

from the division of whole numbers, since only whole objects are counted by whole 

numbers. Three men, three arrows, and so forth, all these make sense, but two-thirds of a 
man and even two-thirds of an arrow are senseless concepts; even three separate thirds of 

an arrow will not kill a deer, for this it is necessary to have a whole arrow. (p. 24-25; 

original emphasis) 

Aleksandrov argues that the historical emergence of fractions is neither connected to the idea of whole 

number division nor multiples of unit fractions. His argument hinges on the fundamental distinction between a unit 

used for counting and for measuring. He writes: “only whole objects are counted by whole numbers” (my 

emphasis). That is, when counting, the chosen unit is indivisible; whereas, when measuring, the chosen unit is 

divisible. This critical conceptual difference notwithstanding, the ontological presentation of fractions as emerging 

from the quotient of whole numbers—parts of an equipartioned whole—or as multiples of unit fractions displayed 

on a numberline are the bases of contemporary proposals for introducting fractions (See, for example, Common 

core state standards for mathematics, Common Core State Standards Initiative, 2010). Instead, Aleksandrov posits 

that the specific interaction between arithmetic and geometry from which the need for fractions emerged was the 

social practice of measuring magnitudes of lengths, areas, and volumes. These practices were part of the social life 

of ancient Africans in Egypt.
4
 For instance, they employed them to construct pyramids more than 1000 years (5000 

years ago) before the famous Ahmes and Moscow papyri were scribed (Struik, 1967/1948; Resnikoff & Wells Jr., 

1984/1973), both of which evidence Egyptians’ invention of fractions and operations on fractions. Fractions arising 

from measuring practices are intertwined with land surveying. According to Herodotus, a Greek historian, who 

wrote the nine-volume magnum opus, The Histories, in the fifth century BCE, the Egyptian practice of land 

surveying gave rise to ‘geometry,’ a derivative of an Ancient Greek word meaning measuring the earth (Roque, 

2012). The ancient Egyptian measuring practices that begot fractions and geometry simultaneously caused 

geometry and fractions to be mutually constituted. 

Though fractions continued to be used in later civilizations such as Mesopotamia, Greece, China, and India, 

as Davydov and Tsvetkovich (1991) note, it was only in the 12
th
 century CE, just 900 years ago, that they were 

considered as numbers and then finally, in the 19
th
 century CE, laws for operating with fractions were formally 

elaborated. By the time rules for operating with fractions were established, fractions had become (1) conceptually 

distant from their concrete “object source” in measuring quantities and (2) an abstract number equal in status with 

natural numbers (Courant & Robbins, 1996/1941; Davydov e Tsvetkovich, 1991). 
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From a Vygotskian or cultural-historical perspective, understanding the ontology of a mathematical 

concept starts with considering its historical origin in social practices and the conscious mathematical theorization 

that led to its development. Measurement as the source for fraction knowledge has been the object of limited 

research efforts. As the material source of both whole numbers and fractions, measurement has been theoretically 

and pedagogically investigated by Brousseau (Brousseau et al., 2004) as well as Davydov and others who have 

adapted Davydov’s curriculum (Davydov & Tsvetkovich, 1991; Morris, 2000; Schmittau & Morris, 2004; 

Dougherty e Venenciano, 2007). Different from “children’s spontaneously constructed counting structures, the 

[Davydov] curriculum develops the concept of a number as the ratio of some quantity to another quantity that is 

used as the unit” (Morris, 2000). Morris (2000) investigated the adoption of this approach to fraction learning with 

a group of fourth-graders (9- to10-year olds) who were learning about fractions as numbers. Two results of her 

analysis are particularly important. First, “literal symbolism proved to be unproblematic for the children. It appears 

to assist the instructor in changing the focus of instruction from numerical computation to reasoning about 

quantitative relationships” (Morris, 2000). Second, “working only with graph paper and a pencil [, children derived 

their own] representations … [that] assisted them in keeping track of abstract relationships, and forced them to re-

think these relationships with each new application” (Morris, 2000). It is possible to provide students with 

manipulative materials, such as Cuisenaire rods (described below), so that when writing about relations among 

their measured lengths, they use “literal symbolism.” Moreover, learners will use the manipulative materials to talk 

about relations they perceive, abstract, and talk about and later indicate those relations in writing. 

Davydov (Davydov & Tsvetkovich, 1991), Morris (2000), Schmittau and Morris (2004), Brousseau 

(Brousseau et al., 2004), and others (Dougherty & Venenciano, 2007) have contributed to knowledge about 

affordances of a measurement perspective for whole number and fraction knowledge. Their work raises questions 

about how to use this perspective to teach fraction knowledge so that students, younger than fourth graders, 

develop number sense about fractions that in turn will provide a conceptual scaffold for students to learn 

subsequently about fractions as numbers and operations on fractions. 

Looking forward ontologically and epistemologically 

In response to this conceptual gap in the literature, we propose that a measurement perspective shapes 

positively early elementary students’ (6 to 8 year olds) development of number sense about fractions through 

studying fractions as measures and issues of magnitude, order, and equivalence. Informed by theoretical work of 

Davydov and Tsvetkovich (1991), developed and implemented during the era of the Union of Soviet Socialist 

Republics, we propose particular ways to conceptualize the ontology of fractions and the epistemology of fraction 

knowledge. We distinguish two different levels of abstraction to arrive at whole numbers and fractions. First, whole 

number knowledge requires abstracting quantity from the qualitative characteristics of objects and later being 

concerned with magnitude, order, equality, and inequality of these quantities. Second, knowledge of fractions 

requires another level of abstraction. It necessitates abstracting quantitative relations between quantities followed 
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by recognizing magnitude, order, equality, and inequality of these quantitative relations. This second level of 

abstraction is the cognitive challenge and opportunity of our perspective on fraction learning. 

The ontological perspective of our measurement perspective posits the following: 

1. A fraction is a relation between two quantities. The relation is a multiplicative comparison 

between two quantities: Suppose   and   are two objects that have a common extensive 

attribute such as length expressed as quantities with a common unit, u, where   equals   units 

of   and   equals   units of  . Then, in the expression,    ,   is understood to measure   and     is the relation of   measured by  . The quantities   and   have the same unit of measure, 

which is something less than or equal to  . The common extensive attribute can also be area, 

volume, mass, weight, or the count of a countable discrete set. This is also known as the 

definition of a fraction-as-number. 

2. A theorization of a fractions-as-measure: In the material realm, suppose two objects,   and  , 

have a common measurable attribute such as length with a common unit, u, where   equals   

units of   and   equals   units of u. The length of one object   is the fraction     of the 

length of the other object,  . As such, the fraction     describes a relation between the two 

objects,   and  , and the relation is a multiplicative comparison,   equals     of  , as one 

quantity is a multiplier of the other. The symbolic representation of a fraction-as-measure is 

this: 
   of or, equivalently, 

    . It represents a measure of   in relation to  . 

Based on this ontological perspective, we posit the following epistemological position about how fraction 

knowledge can emerge: 

1. The study of fractions contains two components: fractions-as-measures and fractions-as-

numbers. 

2. Fractional number sense is developed through the study of fractions-as-measures. Fractions-

as-measures provide material and theoretical foundation for the later study of fractions-as-

numbers and operations on fractions. 

Fractional number sense is a special case of number sense. In general, number sense emerges 

before children begin formal schooling (Jordan et al., 2010); in contrast to those who do not, children 

who possess foundational knowledge of whole numbers are positioned to benefit from mathematical 

experiences and instruction of elementary school (Baroody et al., 2006). Kalchman et al. (2001) provide 

the following list of characteristics what number sense includes: “(a) fluency in estimating and judging 

magnitude, (b) ability to recognize unreasonable results, (c) flexibility when mentally computing, (d) 

ability to move among different representations and to use the most appropriate representations” (p. 2). 

Knowledge of number concepts and skills with mathematics procedures appear to be mutually supportive, 
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each facilitating the development of the other area (Rittle-Johnson et al., 2001). In contrast to whole 

number knowledge, students of early elementary school age (5- to 9-years old) have relatively 

underdeveloped fractional number sense. By the time instruction in fraction begins in third grade (8- to 9-

years old), students, at most, have ideas of one-half, one-third, and perhaps one-fourth. Linguistically, in 

English, they have difficulty pronouncing fractional numbers, not hearing or producing the ordinal 

endings for unit and non-unit fractions. For instance, for the fraction, 
  , instead of two-fourths, students 

erroneously say “two fours.” 

In addition to the need to develop oral fluency with fractional names, early elementary students 

would benefit from developing number sense about the magnitude, order, equivalence, and inequality of 

fractions, starting with fractions-as-measures. To implement our ontological and epistemological 

perspective that we presented penultimate paragraph requires tools such as manipulative materials that 

have an extensive attribute that can be used to compare the attribute among different instantiations of the 

tool. We have chosen to use Cuisenaire rods (see Figure 2). The ingenious inventor of these rods, Emile-

Georges Cuisenaire (1891-1975), a Belgian schoolteacher, imbued them with functional and interesting 

correspondences between color and length. Rods of the same color are the same length and, conversely, 

rods of the same length have the same color. A length that is the double of another is also darker in tone. 

The smallest rod is a neutral color, usually referred to as “white.” Rods that are equivalent in length to 

two, four, and eight white rods have pigments with an affinity to the red family (purple and brown). Rods 

equivalent in length to 3, 6, and 9 white rods are colored respectively green, dark green, and blue, while 

rods equivalent to 5 and 10 white rods are yellow and orange. The rod whose length has the distinction of 

being relatively prime to rods of all other lengths in the set is colored black. Interestingly, the two primary 

colors, red and yellow, mix to make orange, which parallel the fact that the two nontrivial factors of the 

orange rod (equivalent in length to 10 white rods) are the red rod (equivalent in length to 2 white rods) 

and yellow rod (equivalent in length to 5 white rods). 

 

Figure 2. Cuisenaire rods, ten different sizes and colors, arranged in a “staircase” formation. 
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The Cuisenaire rods are a simple but inventive collection of physical materials (wooden or, now, 

plastic parallelepipeds) or manipulatives with which children can quickly become familiar. Being familiar 

with manipulatives in mathematics learning is an important first step in their effective use (Willingham, 

2009). To become familiar with Cuisenaire rods and relations among them, children need to engage in 

both free play and structured tasks in which they attend to two characteristics of the rods: the tangible 

(length) and the visible (color). Because of their simplicity, while students work on mathematics tasks, 

Cuisenaire rods do not generate high extraneous cognitive load (Sweller, 1994; Sweller et al., 1998). As 

such, they allow students to focus mainly on acquiring awarenesses about relations among the rods, 

which yield ideas about whole numbers, fractions, and operations on them. However, as Meira (1998) 

underscores, instructional representations such as Cuisenaire rods have no inherent transparency, they are 

“meaningful only with respect to learners’ activities.” 

With Cuisenaire rods, students can build mathematical meaning and mental images about fractions 

and operations on fractions. Teachers direct their students’ attention to simple but powerful visualizations 

of fractions: measuring lengths of Cuisenaire rods and identifying relations among the rods. The rods are 

straightforward, physical, and cognitive models of fractions. Students can evoke images them to think 

about fractions, relations among fractions, and operations on fractions. They enable students to build 

personal and, therefore, meaningful ideas about fractions and connect them to other mathematical ideas 

(Ma, 1999). Students can connect different mathematical ideas when their understanding builds on basic 

ideas and when they use simple, manipulative models systematically (Ma, 1999; Willingham, 2009). 

To understand fractions and other topics of school mathematics, there are two necessary 

approaches to the idea of number and operations on numbers: partitioning and measurement. First, the 

partitioning approach involves counting, the naming of an ordered sequence of numerals or using these 

numerals to label, without omission or duplication, separate and distinct items of a collection such as 

children on a soccer field or turtles on a beach. Second, the measurement approach involves measuring, 

comparing a continuous quantity to a standard unit such as determining the straight-line distance from 

one end of a soccer field to its other end or the yearly amount of rainwater collected in a barrel. Counting 

is used to answer the question, “How many?”; while measuring answers the question, “How much?” 

Looking forward pedagogically 

To avoid epistemological flaws and inadequacies of the partitioning perspective, we use an 

approach based on measurement (Davydov & Tsvetkovich, 1991; Gattegno, 2009/1960). A prime 

example of an extensive quantity is length. With this, then, how does one teach about fractions from a 

measurement approach, using Cuisenaire rods? This is the subject an instructional model that we 

propose, the 4A-Instructional Model. Table 1 below presents the model, which consists of four phases for 
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implementing a pedagogical approach, the subordination of the teaching of mathematics to students’ 

learning
5
, using Cuisenaire rods. In this approach, an instructional unit is often longer than a single class 

meeting. The sequence consists of a coherent, flexible sequence of tasks intended to enable students to 

educate their awareness about ideas of a mathematical topic. 

Table 1
6
 

Four phases of our instructional model containing 13 potential instructional activities for implementing the 

subordination of the teaching of mathematics to students’ learning, using Cuisenaire rods. 

Actual 

Actions 

1. Engage the motor and mental powers of students (manipulate, observe, listen, see, 

hear, abstract, compare, sequence, stress and ignore…). Instruct them to 
manipulate rods in particular ways so that through their actions on the rods they 

perceive target relations among the rods. 

2. Introduce mathematical language, comparing it, if necessary, to the non-

mathematical language that students use, and provide students with opportunities 

to practice talking mathematically about what they actually perform and perceive 

with the rods. 

3. Have students create their own rod situations that correspond to what is being 

worked on. 

4. Have students talk, draw, and write about what they learn and provide 

opportunities for practice. 

Virtual 

Actions 

5. Engage students in virtual action: manipulating mental images of the rods in ways 

like what students performed in actual action. 

6. Have students create without rods their own mathematical situations that 

correspond to what is being worked on. 

7. Have students talk and write about what they learn and provide opportunities for 

practice. 

Actions 

Written 

8. Introduce writing mathematical expressions and equations that represent what 

students can already perform orally and virtually and provide opportunities for 

practice with the rods available. 

9. Have students create expressions or equations with or without rods available. 

10. Have students talk and write about what they learn and provide opportunities for 

practice. 

Actions 

Formalized 

11. Formalize symbolically or as a definition the mathematical ideas, concepts, and 

procedures that have been the basis of students’ actual and virtual mathematical 
manipulations with the rods. 

12. Have students talk and write about their understanding of their mathematical 

ideas in formal, symbolic or definitional statements.  

13. Provide opportunities for students to practice their formalized, symbolic or 

definitional rendition of what they have done with rods. 

Source: Elaborated by the author. 

The criterion for moving from one phase to another is students’ fluent facility with the 

manipulative actions, verbal and symbolic language, mental actions, and ideas of an instructional phase. 

That is, for a given instructional objective, while working in the Actual Actions phase as soon as students 
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evidence that they are comfortable with the associated rod manipulations, talking about what they are 

doing and perceiving, and can perform actions nearly without the rods, then it is time to move to the 

second phase Virtual Actions. Once in this phase, when students exhibit their ability to respond mentally 

and fluently to tasks from the actual actions phase without physically manipulating rods, then it is 

appropriate to transition to the Actions-Written phase, where they will work symbolically on actions with 

which they already have both actual and virtual facility. 

The fourth phase, Actions Formalized, is a culminating phase where the mathematical ideas that 

students constructed in the first three phases are discussed and written using formal, symbolic language. 

This is the phase, for example, where students use algorithms to represent formally what have done in the 

previous three phases. In this way, an algorithm is experienced as an encapsulation or symbolic trace of 

meaningful mathematical actions (Schmittau, 2003).  

Each of the four phases of our instructional model occasions opportunities for formative and 

summative assessments. In each phase, teachers hear and observe what students do and say and, in 

response to either form of evaluation, adjust their instructional intentions. 

Theoretical and empirical underpinnings of the 4A-Instructional Model 

It is crucial to reveal the research basis for the epistemological perspective that informs the 4A-

Instructional Model. The model assumes that individuals construct knowledge by actively relating of new 

information to their personal experience and their current frameworks for making sense of that experience 

(Gattegno, 1973). It also presupposes that though individuals construct their own knowledge, it is 

accomplished through activities carried out socially (Vygotsky, 1978/1930). In the first phases of the 4A-

Instructional Model, oral language and talk are given primacy over symbolic writing. As Oakes et al. 

(1997) note, talk “is the medium in which meaning is most readily and ubiquitously negotiated” (p. 2). 

Mathematics learning happens through communication in a social context about objects and relations 

among the objects (Gattegno, 1987). The activity of doing mathematics involves employing speech 

genres (explanation, argumentation, and so on) and mathematical inscriptions (numerals, operators, 

graphs, geometric figures, notations, and so forth). Our 4A-Instructional Model suggests that for 

mathematics learning, speaking and writing need to occur at distinct moments. In the trajectory of human 

history and development, hearing and talking precede reading and writing. Similarly, for mathematics 

instruction, reading and writing mathematics should follow facility with hearing and talking 

mathematically (Gattegno, 1973; Bezuk & Cramer, 1989; Moses & Cobb, 2001). Intentionally and 

distinctly, our instructional model first works on hearing and talking mathematically (Actual and Virtual 

Actions) and then on reading and writing mathematics (Actions Written and Formalized). This approach 
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also minimizes the cognitive load (Sweller, 1994) of recalling and attending to mathematical conventions 

when expressing mathematical ideas in written form before having a secure understanding of these ideas. 

We recognize that written mathematical numerals and symbols are not mathematical ideas but rather 

merely written expressions of such ideas. In the first two phases, students first engage with building their 

conceptual ideas and then, in the latter two phases, approach how to express their ideas in writing and 

finally encapsulated symbolically or as a definition. 

In the first two phases, spoken words for fractions and mathematical operations such as “five-

fourths of,” “five-fourths of four-ninths,” and “five-ninths” are used and only in the third phase are 

written symbols like 
    , 

       , and 
   introduced. There are several reasons for this pedagogical 

perspective. Students learn by interacting with themselves and others mediated by natural language—

talking, listening, and observing (Gattegno, 1973; Vygotsky, 1978/1930; Zack & Graves, 2001). It is 

critical for students to talk and use mathematical language to appropriate the words and the associated 

ideas. It is important for students to discuss tasks and ideas and to question one another, negotiate 

meaning, clarify their understanding, and make their ideas comprehensible to their partners. During 

collaborative tasks, students practice and use mathematical language. Their understanding grows as they 

express themselves to their partners and, thereby, reflect on their ideas and learning. To encourage 

students to talk with partners, teachers use several classroom collaborative structures, such as reciprocal 

teaching, solve and discuss, partner discussions, and so on, Moreover, talking before writing reduces 

cognitive load. Students work first on talking about actions and perceptions related to their rod 

manipulations and, once they have fluency with their articulation, then they can focus on using notational 

and other symbolic forms to represent what they already know and can do. 

What students can already do meaningfully and comfortably is evidenced as they transition from 

the Actual-Actions phase into and throughout the Virtual-Actions phase. In this phase, without 

manipulating the rods, students express to themselves and others actions they performed previously in the 

Actual-Actions phase. Gattegno (1957) emphasizes the importance of this phase when he observes that if 

students “are to become mathematicians the actual actions must be replaced by virtual ones” (p. 14). 

Corroborating this position, Davydov (1990) notes that “students should pass gradually and in good time 

from object-related actions to performing them on a mental plane” (p. 174). To support students’ object-

related actions being performed mentally, Virtual-Actions replace Actual-Actions. Virtual mental actions 

may lead students to develop visuospatial strategies. Such strategies resorting to imaginary rods and rod 

configurations may be the mechanism that underlies students’ ability to create mentally and articulate 

orally valid fractional statements about fractions-as-measure magnitudes, order, equivalence, and 

inequalities.
7
 Achieving facility in this Virtual-Actions phase is the foundational underpinning for the two 
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subsequent phases, Written and Formalized Actions. Without this facility, the sustainable construction of, 

for example, the Actions-Written phase is compromised and, instead of relational understanding, students 

inevitably must rely on memory and procedural mechanisms. 

Teachers implement our 4A-Instructional Model in educational settings. These settings are shaped 

by society’s social, political, and economic context. Within this multifaceted context, students interact 

verbally in mathematical activity using informal and academic language to make sense of mathematical 

objects and relations among these objects (see Figure 3). As students interact, they are supported to use 

academic language to describe to themselves and others what they notice as they manipulate Cuisenaire 

rods as well as to explain and provide evidence of relations they notice. They are also encouraged to use 

academic language to justify consequences of the relations and investigate conjectures. This phase is the 

Actual-Action phase and serves as a foundation for all the other phases (see Figure 3). Before moving to 

the second phase, students need to develop a secure understanding of how to perform specific actions on 

rods and relate that to mathematical relations and ideas. Also, students need to acquire fluent ways to talk 

about these mathematical actions, relations, and ideas. 

During the last three phases, students limit their use of physical objects while investigating 

mathematical ideas. In the second phase, Virtual Actions, they start with visualizing their actions on rods 

and, in the third and fourth phases, Actions Written and Actions Formalized, use mathematical symbols 

and notation to write about actions they know how to perform and then formalize these actions in 

symbolic or definitional form. Nevertheless, during these last three phases, it is imperative to allow 

students to revisit the Actual-Action phase and work with rods to investigate certain ideas. When students 

find it necessary to revisit the Actual-Action phase, it does not mean that they are regressing, it indicates 

that they are making sense of new situations or differently of familiar ones (Carpenter et al., 2015). 

Teachers may also invite students to use rods to investigate and talk about certain mathematical ideas so 

that students perceive or work on connections between the Actual-Actions phase and other phases. 

 

Figure 3. The 4A-Instructional context and process of students’ unfolding mathematical activities facilitated by the 
subordination of teaching to learning. 

Informal and Academic 

Language 

Actual Actions 

Actions 

Formalized 

Actions Written 

Virtual Actions 
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Other instructional strategies ask students to represent their ideas in writing early, while they are 

manipulating objects and trying to make sense of mathematical ideas. This strategy does not allow 

students to immerse fully in the mathematical relations embodied in their manipulations of objects. Other 

instructional strategies do not allow students to act on objects before writing; students are asked to 

manipulate symbols in writing. In this type of mathematics instructional strategy, students do not learn 

about mathematical ideas and relations among them. Instead, they memorize rules for manipulating 

symbols and how to express their results in ways that are acceptable by their teacher 

____________ 
Notas 
1 A mathematical structure,    is a group if it consists of a set of elements along with an operation, *, that combines any two elements to 

form a third element of the set and that satisfies four conditions, called the group axioms, namely closure, associativity, identity and inverse. 
The group,        is called commutative or Abelian if the operation, *, is commutative. 
2 A mathematical structure,    is a field if +, −, ×, and ÷ satisfy their ‘usual properties.’ Suppose a, b, c ∈  . For addition, closure: a + b 

gives a result in  ; associative: a + b + c gives one, unique result, regardless of whether we first evaluate a + b or b + c; commutative: a + b 

= b + a; identity: we can find an element 0 ∈   such that a + 0 = a, 0 + a = a; inverse: we can find −a ∈  . For multiplication, closure: a × 

b gives a result in  ; associative: a × b × c gives one, unique result, regardless of whether we first evaluate a × b or b × c; commutative: a × b 

= b × a; identity: we can find and element 1∈   such that a × 1 = a, 1 × a = a; distributive: a × (b + c) = a × b + a × c. Subtraction is merely 

the addition of the inverse. For division, multiplicative inverse: we can find an element     ∈  . 
3 According to the 2005 version of his book, Convex Polyhedra (Springer), Aleksandr Danilovich Aleksandrov (1912-1999) was awarded the 
Stalin State Prize in 1942, the Lobachevsky prize in 1952, and the Euler Golden Medal in 1992. 
4 That Egyptians engaged in these mathematical practices is also corroborated by recent historical analysis. See, for instance,  Roque (2012). 
5 The phrase, “the subordination of teaching to learning,” refers to a general pedagogical perspective that Gattegno (1970d) advocates based 
on research on how children learn (see also, Gattegno, 1973). For further insight into Caleb Gattegno and his relationship to mathematics 
education, see Powell (2007). 
6 Table 1 is an elaborated adaptation of a diagram presented in Catir and Wheeler (1973), where the authors depict their view of the 

unfolding of mathematical activity. 
7 This hypothesis is supported by recent neuroscientific studies concerning the outcome of abacus-based mental calculation training and its 
positive effects on calculation ability and consequently on executive function and neural efficiency (Wang et al., 2017). 
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